Datos Basicos Pero Importantes
17:41 | Author: Bel'

Vocabulario


Amorfo: se dice del cuerpo sólido carente de estructura cristalina, en el que las partículas se ordenan de forma irregular.

Cristalino: se dice del cuerpo cuyas partículas componentes se sitúan de acuerdo a una estructura geométrica.

Cristal: forma externa ideal de un sólido cristalino.

Sólido cristalino: cuerpo en estado sólido que se caracteriza por disponer sus componentes en una forma ordenada geométricamente. A diferencia de «cristal», la expresión «sólido cristalino» se refiere más bien a la apariencia interna del cuerpo.


Algunos minerales cristalinos

Pirita, diamante, sal gema (sistema cúbico).

Yeso, mica, malaquita (sistema monoclínico).

Axinita, feldespato (sistema triclínico).

Esmeralda, calcita, cuarzo (sistema hexagonal).

Baritina, azufre (sistema ortorrómbico).

Vesubiana, casiterita (sistema tetragonal).



Enlace Metalico
17:35 | Author: Bel'
Para explicar las propiedades características de los metales (su alta conductividad eléctrica y térmica, ductilidad y maleabilidad, ...) se ha elaborado un modelo de enlace metálico conocido como modelo de la nube o del mar de electrones:

Los átomos de los metales tienen pocos electrones en su última capa, por lo general 1, 2 ó 3. Éstos átomos pierden fácilmente esos electrones (electrones de valencia) y se convierten en iones positivos, por ejemplo Na+, Cu2+, Mg2+. Los iones positivos resultantes se ordenan en el espacio formando la red metálica. Los electrones de valencia desprendidos de los átomos forman una nube de electrones que puede desplazarse a través de toda la red. De este modo todo el conjunto de los iones positivos del metal queda unido mediante la nube de electrones con carga negativa que los envuelve.



Enlace Covalente
17:27 | Author: Bel'
Los enlaces covalentes son las fuerzas que mantienen unidos entre sí los átomos no metálicos (los elementos situados a la derecha en la tabla periódica -C, O, F, Cl, ...).
Estos átomos tienen muchos electrones en su nivel más externo (electrones de valencia) y tienen tendencia a ganar electrones más que a cederlos, para adquirir la estabilidad de la estructura electrónica de gas noble. Por tanto, los átomos no metálicos no pueden cederse electrones entre sí para formar iones de signo opuesto.

En este caso el enlace se forma al compartir un par de electrones entre los dos átomos, uno procedente de cada átomo. El par de electrones compartido es común a los dos átomos y los mantiene unidos, de manera que ambos adquieren la estructura electrónica de gas noble. Se forman así habitualmente moléculas: pequeños grupos de átomos unidos entre sí por enlaces covalentes.

Ejemplo: El gas cloro está formado por moléculas, Cl2, en las que dos átomos de cloro se hallan unidos por un enlace covalente. En la siguiente simulación interactiva están representados 2 átomos de cloro con solo sus capas externas de electrones. Aproxima un átomo a otro con el ratón y observa lo que ocurre:




En otros casos un mismo átomo puede compartir más de un par de electrones con otros átomos. Por ejemplo en la molécula de agua (H2O) el átomo de oxígeno central comparte un par de electrones con cada uno de los dos átomos de hidrógeno. Estos pares de electrones compartidos se representan habitualmente por una barra entre los dos átomos unidos




Enlace o Edificio Ionico
17:12 | Author: Bel'

Este enlace se produce cuando átomos de elementos metálicos (especialmente los situados más a la izquierda en la tabla periódica -períodos 1, 2 y 3) se encuentran con átomos no metálicos (los elementos situados a la derecha en la tabla periódica -especialmente los períodos 16 y 17).

En este caso los átomos del metal ceden electrones a los átomos del no metal, transformándose en iones positivos y negativos, respectivamente. Al formarse iones de carga opuesta éstos se atraen por fuerzas eléctricas intensas, quedando fuertemente unidos y dando lugar a un compuesto iónico. Estas fuerzas eléctricas las llamamos enlaces i
ónicos.

Ejemplo: La sal común se forma cuando los átomos del gas cloro se ponen en contacto con los átomos del metal sodio. En la siguiente simulación interactiva están representados los átomos de sodio y cloro con solo sus capas externas de electrones. Aproxima un átomo a otro con el ratón y observa lo que ocurre:




Edificios O Enlaces Quimicos
16:47 | Author: Bel'
Prácticamente todas las sustancias que encontramos en la naturaleza están formadas por átomos unidos. Las intensas fuerzas que mantienen unidos los átomos en las distintas sustancias se denominan enlaces químicos.

¿Por qué se unen los átomos?

Los átomos se unen porque, al estar unidos, adquieren una s
ituación más estable que cuando estaban separados. Esta situación de mayor estabilidad suele darse cuando el número de electrones que poseen los átomos en su último nivel es igual a ocho, estructura que coincide con la de los gases nobles. Los gases nobles tienen muy poca tendencia a formar compuestos y suelen encontrarse en la naturaleza como átomos aislados. Sus átomos, a excepción del helio, tienen 8 electrones en su último nivel. Esta configuración electrónica es extremadamente estable y a ella deben su poca reactividad.
Podemos explicar la unión de los átomos para formar enlaces porque con ella consiguen que su último nivel tenga 8 electrones, la misma configuración electrónica que los átom
os de los gases nobles. Este principio recibe el nombre de regla del octeto y aunque no es general para todos los átomos, es útil en muchos casos.

Distintos tipos de enlaces

Las propiedades de las sustancias dependen en gran medida de la naturaleza de los enlaces que unen sus átomos.
Existen tres tipos principales de enlaces químicos: enlace iónico, enlace covalente y enlace metálico. Estos enlaces, al condicionar las propiedades de las sustancias que lo
s presentan, permiten clasificarlas en: iónicas, covalentes y metálicas o metales.


Cristalografía
16:37 | Author: Bel'
(Del gr. crustalloz y -grafía) Ciencia que estudia los cristales y la forma que adoptan los cuerpos al cristalizar: la cristalografía está regida por leyes físico-químicas.
Ciencia que se centra en el estudio de las sustancias cristalinas (cristales), de manera que describe su morfología externa, organización interna y sus propiedades físicas y químicas. Aunque la cristalografía comienza su desarrollo como una rama de la mineralogía, hoy en día se la considera como una ciencia en sí misma, que trata de la materia cristalina, ya sea de origen natural (minerales), o artificial. Por cristal se entiende toda sustancia sólida inorgánica de origen natural, composición química homogénea y con una estructura interna constituida por elementos que se repiten ordenadamente en el espacio y presentan ciertas relaciones de simetría.

Las partículas de los cuerpos sólidos, salvo excepciones, se ordenan en el espacio de acuerdo a determinados tipos de redes geométricas, también llamadas cristalinas. Esta ordenación, le da a los sólidos su consistencia y la mayor parte de sus propiedades.

Generalidades

Los sólidos cristalinos tienden a adoptar estructuras internas geométricas basadas en líneas rectas y planos paralelos. Ahora bien, el aspecto externo de un cristal no es siempre completamente regular, pues depende de una serie de condiciones:

  • Composición química: el sólido puede ser una sustancia simple o un compuesto, y puede contener impurezas que alteren la estructura cristalina y otras propiedades, como la consistencia o el color.
  • Temperatura y presión: ambas variables influyen en la formación de los cristales y su crecimiento. Por lo general, los cristales se forman en condiciones de alta presión y elevadas temperaturas.
  • Espacio y tiempo: el crecimiento de un cristal puede verse limitado por ambos, especialmente por el primero, ya que a menudo la falta de espacio es responsable del aspecto imperfecto que ofrecen algunos cristales en su apariencia externa.

La simetría

Los cuerpos cristalinos forman redes que se ordenan en torno a una serie de elementos de simetría, cuya cantidad y distribución determina los diferentes sistemas de cristalización:

  • Ejes de simetría: son líneas imaginarias que cruzan el interior de la estructura cristalina. Al girar 360º hacen que el motivo geométrico del cristal se repita un número determinado de veces. Los ejes de simetría pueden ser binarios, ternarios, cuaternarios y senarios, según el número de repeticiones que generen.
  • Planos de simetría: son superficies planas que dividen el cristal en dos mitades exactamente iguales.
  • Centros de simetría: son puntos imaginarios situados en el interior del cristal. Por ellos pasan los principales ejes y planos de simetría.

Distribución de los ejes y planos de simetría en el sistema cúbico.

Las redes cristalinas

Los componentes elementales de un cuerpo sólido pueden ser de cuatro tipos:

  • Átomos: partículas elementales de materia con carga eléctrica neutra.
  • Iones: átomos con carga eléctrica negativa (aniones) o positiva (cationes) debido a la transferencia o recepción, respectivamente, de uno o más electrones.
  • Grupos iónicos: agrupación de varios iones del mismo o diferentes elementos químicos.
  • Moléculas: agrupación de varios átomos del mismo o de diferentes elementos.

La ordenación geométrica de estos componentes en las tres direcciones del espacio da lugar a la formación de una red cristalina, una trama geométrica basada en la repetición de un cuerpo tridimensional determinado.

Existen catorce tipos de redes cristalinas, también llamadas redes de Bravais, que a su vez se agrupan en siete sistemas cristalinos:

  • Triclínico.
  • Monoclínico: simple y de bases centradas. Presenta un eje binario.
  • Rómbico: simple, centrado, de bases centradas, y de caras y bases centradas. Posee tres ejes binarios.
  • Romboédrico: posee un eje ternario.
  • Hexagonal: presenta un eje cuaternario.
  • Tetragonal: simple y centrado. Tiene un eje cuaternario.
  • Cúbico: simple, centrado y de caras centradas. Presenta cuatro ejes ternarios.

Las redes de Bravais

A partir de los siete sistemas cristalinos se han podido describir catorce redes cristalinas, que son llamadas también redes de Bravais, en honor al mineralogista francés del siglo XIX Auguste Bravais, que fue el primero en proponer la hipótesis de la estructura reticular de los minerales.

Las catorce redes cristalinas de Bravais.





Sólidos Cristalinos
16:19 | Author: Bel'
Los Solidos Cristalinos Son la
Segunda Gran Divicion de los Solidos:

En el estado Sólido las moléculas, iones o átomos están unidos por fuerzas relativamente intensas, formando un todo compacto.
La mayor proximidad entre sus partículas, es una característica de los sólidos, y permite que entren en uego las fuerzas de enlace, las cuales ordenan el conjunto dondo lugar a una red cristalina. Las partículas ocupan posiciones definidas y sus movimientos se limitan a vibraciones en torno al vértice de la red cristalina, por esta razón los sólidos poseen forma y volumen definido.

Los sólidos en la naturaleza, la mayoría son cristalinos, pero dicha estructura ordenada no se refleja en forma geométrica regular que se vea a simple vista.Debido a que por lo general, están formados por pequeños cristales orientados de diferentes maneras, es decir, en una estructura POLICRISTALINA.
En la red cristalina sus componetes elementales pueden ser átomos, iones o moléculas, por eso no se puede hablar de la molécula de un cristal, sino más bien de un retículo elemental o celdilla unidad la que se repite una y otra vez en una estructura períodica o red cristalina.

Las propiedades físicas de los sólidos ( tiempo de fusión,capacidad para conducir corriente, resistencia a la deformación ,dureza, entre otras.) dependen de las fuerzas de enlace entre sus partículas, ejemplos de estas son los sólidos: iónicos,formados por moléculas apolares y/o polares, metálicos y covalentes.

  • Sólidos iónicos(Sales):

-
Son duros y a la vez frágiles .
-Poseen altos puntos de fusión.
-Son malos conductores de eléctricidad.
-Sus disoluciones presentan a su vez una conductividad elevada.

  • Sólidos formados por moléculas apolares:- Cl2,H2 y CO2

-
Son blandos gracias a la debilidad en sus fuerzas

de atracción, "Vander Waals". -Su punto de fusión es bajo, por lo que sólo a bajas
temperaturas, las fuerzas ordenadoras del enlace
predominan sobre el efecto disgregador del calor.
- Poseen conductivilidad eléctrica pero ésta es
extremadamente baja, por ausencia de cargas libres.
  • Sólidos polares:

-
H2O
- Posee características intermedias entre los sólido iónicos y los
formados por moléculas apolares.

  • Sólidos metálicos:

-
Se caracteriza por su enlace metálico con gas de electrones
externos compartidos, debido a esto podemos decir :
-Son buenos conductores eléctricos y de calor.

-Son ductiles.
-Son maleables.
-Poseen puntos de fuisión alta.

  • Sólidos covalentes:

-Están formados por una red tridimensional de enlaces atómicos fuertes, dando lugar a propiedades como:
-Poseen elevados puntos de fusión.
-Tienen escasa conductividad.
-Poseen extraordinariadureza.


Ejemplos de sólidos cristalinos:

En los ejemplos podemos encontar una gran cantidad de polímeros naturales.Estas partículas pueden ser átomos unidos por enlaces covalentes
(diamante y metales) o iones unidos por electrovalencia (cloruro de sodio). Algunos ejemplos son:

  • Diamante
  • Cuarzo. Rubí.
  • Cloruro de sodio. Sulfato de cobre.
  • Azùcar


Sólidos Amorfos
16:16 | Author: Bel'

Como mencione anteriormente los solidos, como estado, es algo muy amplio de que hablar, por ende, comenzaremos dividiendolos en dos grupos, los cuales son, Los Solidos Amorfos y Los Solidos Cristalinos. Partire Con los Amorfos:

Solidos Amorfos:

La Estructura Amorfa se presenta como un amontonamiento caótico de subestructuras idénticas. Mientras que la estructura cristalina se presenta en forma de repetición de subestructuras estrictamente periódicas, en las que domina el paralelismo; el cuarzo es el ejemplo más habitual. Por otra parte, en los cristales se distingue un orden a larga distancia, con una organización rigurosamente periódica de las subestructuras, en tanto que en las estructuras amorfas, las subestructuras siguen líneas quebradas al azar y el orden sólo se discierne a corta distancia. En la difracción también se refleja esta diferencia; la imagen que produce un haz de

partículas -fotones, electrones, neutrones- que incide en un cristal amorfo conlleva un punto de impacto central, que corresponde a las partículas no desviadas, rodeado de anillos que corresponden a las distancias medias que son las más frecuentes entre los átomos. Pero, cuando el haz incide en un cristal, la perfecta periodicidad de las estructuras atómicas implica difracciones regulares de las partículas, que tienen lugar en direcciones privilegiadas y características de la estructura del cristal. La imagen se asemeja a una rejilla, en la que se distinguen unos puntos espaciados de forma regular que se llaman reflexiones de Bragg.

Descripción de las propiedades de los sólidos amorfos.

Un sólido amorfo consiste en partículas acomodadas en forma irregular y por ello no tienen el orden que se encuentra en los cristales. Ejemplos de sólidos amorfos son el vidrio y muchos plásticos. Los sólidos amorfos difieren de los cristalinos por la manera en que se funden. Si controlamos la temperatura de un sólido cristalino cuando se funde, encontraremos que permanece constante. Los sólidos amorfos no tienen temperatura de fusión bien definida; se suavizan y funden en un rango de temperatura y no tienen “punto de fusión” característico. Los sólidos amorfos, al igual que los líquidos y gases, son isotrópicos, es decir sus propiedades son iguales en todas las direcciones. Esto se debe a la falta de regularidad en el ordenamiento de las partículas en los sólidos amorfos, lo cual determina que todas las direcciones sean equivalentes.

La característica más notoria de estos materiales es la ausencia de orden de largo alcance. Esto significa que, al contrario de lo que ocurre en un cristal, el conocimiento de las posiciones atómicas de una región no nos permite predecir cuales serán las posiciones atómicas en otra región más o menos distante. A corto alcance sólo en el caso de los gases se puede realmente hablar de aleatoriedad, ya que tanto en los líquidos como en los gases se observan valores de densidad que sólo son compatibles con empaquetamientos más o menos compactos de átomos. Ahora bien, la obtención de estos empaquetamientos impone ciertas restricciones, esto es lo que nos permite hablar de orden de corto alcance. Este orden de corto alcance está siempre presente, sin embargo entre el sólido cristalino y el líquido hay bastantes diferencias, mientras que entre el líquido y el sólido amorfo encontramos bastantes semejanzas. Sin embargo el número de átomos que rodea a un átomo dado y la distancia interatómica media son similares en las fases sólida y líquida como corrobora la similitud encontrada en los valores de la densidad de cada fase. Básicamente hay tres modelos que intentan explicar la estructura de un amorfo.

Modelo microcristalino: Los materiales amorfos están constituidos por un elevado número de agregados cristalinos, cada uno de ellos constituido por alrededor de 100 átomos. Estos agregados cristalinos están dispersos en el sólido y se enlazan entre sí mediante una “red” cuya naturaleza hay que especificar. La limitación en el número de átomos en el agregado proviene del hecho de que no se pueden conseguir agregados compactos de mayor tamaño con energía suficientemente pequeña como para estabilizar la estructura.

Modelo poliédrico: De nuevo estamos ante un empaquetamiento de átomos, enlazados según una configuración tetraédrica. Sólo para pequeños números de átomos consigue empaquetamientos perfectos con baja energía; para números elevados de átomos hay que empezar a admitir un cierto grado de frustración. Tampoco es capaz de definir la naturaleza de la “red” en la que los agregados están dispersos. Los aglomerados resultantes en este modelo poseen ejes de rotación de orden de cinco, elemento de simetría prohibido en los cristales.

Modelo de empaquetamiento denso al azar: Este modelo fue propuesto inicialmente por Bernal para explicar la estructura de los líquidos. Su interés actual es fundamentalmente histórico. Se trata de ir ensamblando esferas de forma de forma que la configuración sea lo más compacta posible. En cada etapa vamos añadiendo una nueva esfera tan cerca como sea posible del centro del agregado correspondiente. Las cuatro primeras esferas constituirán un tetraedro regular porque este es el poliedro que permite un empaquetamiento más denso, sin embargo a medida que el número de esferas vaya aumentando, la configuración irá perdiendo capacidad puesto que no podemos rellenar completamente el espacio a base de tetraedros regulares. Para determinar la distribución de átomos en un material y por tanto acercarnos al tipo de orden que presento podemos hacer un análisis de rayos X. En las gráficas siguientes representamos la intensidad de la radiación dispersada en función del ángulo de difracción, para diferentes estructuras.

En un gas se mantiene prácticamente constante como corresponde a una distribución aleatoria de átomos. En el caso de líquidos y sólidos amorfos no podemos hablar de periodicidad pero se observa una fuerte modulación que efectivamente indica un cierto grado de corto alcance.

Finalmente en el sólido cristalino las direcciones de dispersión están perfectamente bien definidas dando lugar a las líneas típicas de difracción.

Los Sólidos
16:11 | Author: Bel'

Como Podrías Imaginar, Este es un blog Con la Finalidad de Dar Ayuda Que Concierne a La Química, Mas Específicamente al Estado Sólido de La Materia, Lo Cual De Por Si Es Amplio, Primero Comprendamos Las Propiedades Comunes Y Básicas de Los Sólidos


Propiedades de los Sólidos:



Se caracteriza por la gran fuerza de cohesión entre sus moléculas, lo cual impide cualquier tipo de expansión. Calentados a gran temperatura, la cohesión se debilita y puede convertirse sucesivamente en líquido y gas.

FORMA: tienen forma propia y fija.

VOLUMEN: volumen propio y fijo.

COMPRESIBILIDAD: no pueden comprimirse.

FUERZAS INTERMOLECULARES: En un sólido las fuerzas intermoleculares que predominan son las de ATRACCIÓN.

Como ya mencionamos, un sólido es una sustancia formada por moléculas que se encuentran estrechamente unidas entre sí mediante una fuerza llamada fuerza de cohesión. La disposición de estas moléculas le da un aspecto de dureza y de rigidez con el que frecuentemente se le asocia. Los sólidos son duros y presentan dificultad para comprimirse. Esto se explica porque las moléculas que los forman están tan cerca, que no dejan espacios entre sí. Si miras a tu alrededor, notarás que todos los sólidos tienen una forma definida. Esta característica se mantiene, salvo que actúe sobre ellos una fuerza tan grande que los deforme. La forma definida de los sólidos es producto de la fuerza de cohesión que mantiene unidas a las moléculas.

¿A qué se debe que los sólidos sean diferentes?

Estas diferencias pueden explicarse debido a que los cuerpos sólidos presentan propiedades específicas, en mayor o menor grado, entre las cuales señalaremos:

  • Elasticidad: Un sólido recupera su forma original cuando es deformado. Un resorte es un objeto en que podemos observar esta propiedad.
  • Fragilidad: Un sólido puede romperse en muchos pedazos (quebradizo).
  • Dureza: Un sólido es duro cuando no puede ser rayado por otro más blando. El diamante es un sólido con dureza elevada.
  • Forma definida: Tienen forma definida, son relativamente rígidos y no fluyen como lo hacen los gases y los líquidos, excepto a bajas presiones extremas.
  • Volumen definido: Debido a que tienen una forma definida, su volumen también es constante.
  • Alta densidad: Los sólidos tienen densidades relativamente altas debido a la cercanía de sus moléculas por eso se dice que son más “pesados”
  • Flotación: Algunos sólidos cumplen con esta propiedad, solo si su densidad es menor a la del liquido en el cual se coloca.
  • Inercia: es la dificultad o resistencia que opone un sistema físico o un sistema social a posibles cambios, en el caso de los sólidos pone resistencia a cambiar su estado de reposo.
  • Tenacidad: En ciencia de los Materiales la tenacidad es la resistencia que opone un material a que se propaguen fisuras o grietas.
  • Maleabilidad: Es la propiedad de la materia, que presentan los cuerpos a ser labrados por deformación. La maleabilidad permite la obtención de delgadas láminas de material sin que éste se rompa, teniendo en común que no existe ningún método para cuantificarlas.
  • Ductilidad La ductilidad se refiere a la propiedad de los sólidos de poder obtener hilos de ellos.